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Summary

This paper presents some facets of the French experience with human factors in the process of
certification of advanced automated cockpits. Three types of difficulties are described: first, the
difficulties concerning the hotly debated concept of human error and its non-linear relationship
to risk of accident; a typology of errors to be taken into account in the certification process is
put forward to respond to this issue. Next, the difficulties connected to the basically gradual
and evolving nature of pilot expertise on a given type of aircraft, which contrasts with the
immediate and definitive style of certifying systems. The last difficulties to be considered are
those related to the goals of certification itself on these new aircraft and the status of findings
from human factor analyses (in particular, what should be done with disappointing results,
how much can the changes induced by human factors investigation economically affect aircraft
design, how many errors do we need to accumulate before we revise the system, what should
be remedied when human factor problems are discovered at the certification stage: the machine?
pilot lzaining? the rules? or everything?).

The growth of advanced-automated glass cockpits has forced the international aeronautical
community to pay more attention to human factors during the design phase, the certification
phase and pilot training. The recent creation of a human factor desk at the DGAC-SFACT
(Official French services) is a direct consequence of this.

The paper is divided into three parts. Part one debates human error and its relationship with
system design and accident risk. Part two describes difficulties connected to the basically
gradual and evolving nature of pilot expertise on a given type of aircraft, which contrasts with
the immediate and definitive style of certifying systems. Part three focuses on concrete
outcomes of human factors for certification purposes.

What Model for Human Error and What Links Between System

Design and Accident-Risk?

The Goal of Aircraft Certification

The goal of aircraft certification is simple: guarantee that an aircraft fits the legal flight safety

requirements when flown by qualified standard pilots who are as representative as possible of
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end-users. The crews taking part in the certification campaign are used to bring systems into
play and are at times as co-appraisers, but are never examined in their own right in the
certification campaign. Thus, human errors observed during the certification campaign used to

be classified in two categories. First, there are errors related to system-design: e.g., input
errors, such as stick and throttle errors and inappropriate settings. These errors were taken into

consideration in the certification process. Second, there are errors resulting from pilot attitudes,
air-traffic control dialogues and clearances, or individual weaknesses related to general aviation
know-how. These second type errors were not considered to be relevant for aircraft
certification purposes.

Why Change the Current Procedures of Certification?

The present level of flight safety is very good. The risk of accident is about one per one
million departures in industrial nations. However, this value has been virtually stable for fifteen
years. It was attained before the growth of automated aircraft and before human factors

became a target objective of FAA and the international aeronautical community.
In this context, why should the certification process bother with human factors?
The answer is twofold. First, advanced-automated aircraft have fewer dramatic failures, but

the rate of accidents is not decreasing. Accident causes are increasingly due to the cognitive
failure of crews. This introduces new problems of interference between system reliability and
human reliability. In other words, the technical improvement of a system safety based on
automation could result in a negative outcome for human reliability. Moreover, since these
technical changes are barely related to the previous experience acquired on standard aircraft,

certifiers, whether they are expert pilots or engineers, must ask human-factors specialists for
scientifically-based assistance to evaluate systems better. Second, with a constant rate of
accidents, any increase in traffic volume will result in an increase in the total number of

accidents. Moreover, the negative impact of each (rare) accident on customers (passengers and
also companies) is multiplied by modem information networks. Naturally this is undesirable,
and the improvement of this situation is the stated objective of the aeronautical community.
The only solution to remedy this situation is to continue to increase flight safety up to the

present level. However, it is clear (given the current level) that gains will not be easy in
previously examined domains and also that new domains will have to be taken into
consideration. Human factors is one the most important of these new domains aside from the
future of ATC communications.

Let us examine how these objectives impact the relationship between human error, system
design and accident risk, and hence impact certification procedures. But of course the first
problem to tackle is this of defining human error without ambiguity.

Wariness of the Definition of Human Error

The ergonomics literature has proposed numerous definitions and classifications of human

error from process control. The dominant definition considers human error as a deviation from
the norms, whether these norms are written or assumed from practice. This definition is both
the easiest to use and the most debatable. Most recent cognitive ergonomics field-studies
(Amalberti, 1992; deKeyser, 1986; Rasmussen, 1986) show that novices continuously
interpret norms to make the job feasible with their limited resources and knowledge and that
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experts interpret norms still further with routines, shortcuts and violations. To sum up, norms

are never respected, although they serve operators as references both to give and to limit

degrees of freedom adapting to the on-going situation. Human operators are experts in piloting
this derivative of norms to fit the situation requirements with minimum workload.

In contrast, another way to define error would be to consider error as a deviation from

operator intention. This approach is probably less biased than considering error as a deviation

to norms. However, operator intentions are hard to evidence, especially after a lengthy delay
between action and analysis, and in the end human error still continues to be considered as a

deviation from norms during the process of certification.

Experience acquired in participating as a neutral observer in the minimum crew campaign of
advanced automated glass cockpits shows that ambiguities in human error definition lead the

certification team, poorly trained in human factors, to make numerous mistakes in classifying

and interpreting the crew errors. These mistakes are threefold. First, errors immediately

corrected by the crew tend to be ignored. However, many of these errors point to incorrect

system design, especially when they are repeated almost systematically. Second, deviations

from norms are too often considered as errors although they are not. In many cases, they

represent pilots' attempts to conserve resources or to manage the system and the task more

conservatively. Third, some deviations where there are no specific procedural norms are

ignored, although they potentially endanger the flight. This is typically the case of poor

synergy and poor crew coordination which can result from the system design as well as

procedure or input errors.

Modelling Relationships Between Human-Error and System Design

Ergonomics has always argued that systems should be designed primarily for end-users

(human-centred design). This is a very basic and central value of ergonomics. Nevertheless,

the concept of the human-centred system, and in a certain sense of a "good system," has

significantly shifted over the last ten years with changes in technologies and ergonomics
theories. Let us examine these changes.

A good ergonomics design has long been considered to be a design that prevents errors and

facilitates good performance with as low a workload as possible. In the 1940's, the main

interest was in unambiguous commands designed to minimized errors; e.g., confusion between

gear and speed brakes (Fitts, 1947). This type of ergonomics, which is dominant in the USA,

is termed Classical Human Factors. The basic philosophy draws on the central idea that human

error is avoidable if the design respects human limitations and capacities, and this leads to the

concept of "fault-preventing system design." It has been extensively and successfully applied

to cockpit design and is currently used.

However, several factors have contributed to a recent decline of this approach: new

technologies, new needs, and new ergonomics theories.

New Technologies and Classic Human Factors

Cockpit automation has enhanced flight performance in many domains such as precision

approach, flight accuracy, engine performance, and pilots' situation awareness (with the

introduction of map display). Automation has also mechanically reduced a great number of
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human errors resulting from improper power or stick settings and system handling simply

because these tasks do not longer pilot-dependent.
However, the drawbacks of automation for human behaviour are as numerous as the

advantages described above.
Cockpit automation and its consequences for cockpit layout have considerably reduced the

benefits expected from a "simple human factors-based system-design."
The Flight Management System (FMS), with its undifferentiated and multiplexed keyboard,

is a blatant example of this (Pelegrin, 1993; Sarter, 1992). This design is the source of many

input errors in programming systems.
Criticisms have also been directed to information displays. The ability to display, aside from

classical dials, much more information in various new forms (such as drawings and texts) has

led designers to a series of poor ergonomics solutions regarding the capacities and limitations
of human perception. Perception time tends to be increased with the use of textual information,
perceptual feedback is reduced in peripheral vision (due to loss of motion of sticks and throttles
and also due to cockpit architecture which requires the other crew member to move less), and
auditory and kinesthetic sensations are also reduced (due to computer program smoothing

system reaction to improve passenger comfort).
But of course the expected benefits of automation for ergonomics are elsewhere. Situation

awareness has been improved with the use of map displays (MD), Primary Flight Display (PD)
and ECAMs or EICAS.

To sum up, the new cockpit layout (glass cockpit) is assumed to enhance the pilot's
situational awareness, but the solutions chosen to reach this goal are clearly to the detriment of

classic sensory-motor human factors.

Evolution of Theories: Cognitive Ergonomics, Another Way to Consider

Ergonomics

The change in goals for cockpit design have prompted new developements in ergonomics
theories in the eighties. This is the domain of cognitive ergonomics, which draws heavily on
the European ergonomics tradition. The value of such ergonomy is pilots' cognitive modelling
focusing on their strategies and know-how. Numerous field studies have shown the
advantages of this type of operator's cognitive model (Amalberti, 1992; Bainbridge, 1989; de

Keyser, 1986; Hollnagel, 1993; Reason, 1990). The following section summarizes the main
characteristics of one pilot's cognitive model.

Professional pilots generally have satisfactory procedural knowledge of their work domain
and remarkable reasoning capacities, but they are resource-limited and cannot use all the

knowledge and the reasoning capacities they would like to in time-related situations. The true
task of pilots is to develop strategies to get the job done with respect to this resource-limitation
bottle-neck.

Solutions Call for Planning, Anticipation and Risk Taking

Because their resources are limited, pilots need to strike a balance between several conflicting

risks: an objective risk resulting from flight context (risk of accident) and a cognitive risk
resulting from personal resource management (risk of overload and deterioration of mental

performance).
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Tokeepresourcemanagementfeasible,thesolutionconsistsofdecreasingoutsiderisks,
simplifyingsituations,onlydealingwithafewhypotheses,andschematizingreality.Tokeep
outsideriskwithinacceptablelimits,thesolutionisto takeasmanypreflightactionsas
possibleinordertosimplifytheflight.

Anybreakdowninthisfragileandactiveequilibriumcanresultinunexpectedsituations,in
whichpilotperformancemaybedecreased.Evidenceshowsthathumanerrorsresultfrom
internalcharacteristicsofcognitivemodelsandarenotsuppressible(Reason,1990;Senders,
1991).Becauseresources-limitationsforcethepilottomakeaseriesofcompromisesbetween
whatthesituationshouldideallyrequireandwhatheiscapableofdoing,errorsarethelogical
consequence.Moreover,expertiseresultsfromexperiencingerrors,(Anderson,1985)and
errorsaregenerallyprofitablewhenthepilotreceivesimmediatefeedbackfromhiserrors.

Newtechnologiesconfirmthisgeneralpicture.AsWienerandBainbridgepointout
(Bainbridge,1989; Wiener, 1980), automation does not reduce the number of global errors,
but merely changes error types. There are more routine errors and representation errors.

The consequences for ergonomics and certification purposes are twofold. First, the concept
of "fault-tolerant system design" replaces the one of "fault-preventing system design." Fault-

tolerant system design does not aim at limiting local errors but merely at improving pilot's
awareness, giving as clear feedback as possible of error, and possibly correcting the immediate

consequence of error when the flight is endangered; i.e., logical testing on FMS inputs or
safety envelope of flight-laws (alpha-floor). Second, it is clear that in this theoretical

framework it is no longer satisfactory to measure human performance as a simple error rate.
More complex approaches are required to efficiently serve the certification process.

Should Error Analysis be Restricted to Human-Machine Interaction?

Standard certification procedures do not deal with crew errors which are not directly related to
system design. However, new technologies could lead to a change in this position. The
interdependency of any component of the aeronautical system, aircraft, crews, ATC, or
maintenance, makes the analysis of causality between design and consequence of design much

more complex than on a simple system. Any change in system philosophy influences the way
operators carry out the task, even for actions not directly related to system interface. This is
typically the case for crew coordination in glass cockpits.

Glass cockpit layout is generally assumed to make crew coordination more difficult. The

reasons are threefold. First, as described above, communications require more and more

central vision and active vocal dialogue to read the written information and to remedy the
relative deprivation of sensory inputs. Second, new cockpit architectures, with independent
access to information and commands, facilitate desynchronization. Pilots can display modes,
change modes, or change parameters on their channel which the other crew member is totally
unaware of. Third, problems of language emerge because more and more information is
written. The standard language of aviation is English, although most pilots in the world have a
different native language and do not speak perfect English (Pelegrin, 1993).

What emerges from these various difficulties is that many situations of poor coordination in
a glass cockpit can be related to system design although they are not directly related to a

specific action on the interface. This level of causality challenges the philosophy of the system
and calls for complex corrections. It is easy to understand that designers are very reluctant to
consider that these errors are related to system design and prefer to pass on the problem to
trainers.
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Relationship Between Human Error and Accident-Risk

Safety is a central concern of aircraft certification. System-failure classically serves to measure
system reliability, and human error serves as an equivalent measure of human reliability.
Measures could be quantitative or qualitative (type of error), but it is explicitly admitted that a

good design and a safe system would provoke less errors than an unsatisfactory design, and
would therefore result in fewer accidents.

This is only partially true. We have seen that human error is not totally avoidable.

Moreover, it is important to remember that the accident-rate is 1 accident per million departures,
and that there are over 5 human errors per flight which are not detected and corrected

immediately by crews (Amalberti, unpublished report; this value comes from numerous flights
made in 1992 on glass cockpits in the observer-position). Thus, even though human

responsibility appears to have risen in glass cockpit accidents, the relationship between human
error and accident is far from being trivial.

The key-point is that the relationship between system design, human-error and the risk of
accident is not linear from great risks to no risk. Obvious bad system-design or/and unadapted

regulations or training will cause numerous human-errors and will increase the risk of accident.
However, even if the design, training and regulation are perfected, numerous human-errors
and a non-decreasing risk of accident will remain. Without strong relations between the two

arguments, remaining accidents are poorly linked to human-errors. They are better linked to a
matter of circumstances, a dramatic combination of unexpected events in which hnman-error
can occur but not seen as decisive factor. This picture specifically applies to rare accidents

arising in the context of high reliability.
For certification concerns, this non-linearity between human-error and risk of accident can

become a problem. The central concern is to have enough references on human-error theories
to clearly separate what should be a "normal-rate and type of human error" from an "abnormal
rate and type of human error" due to poor system-design, training or regulation. This is

typically a domain in which human factors could improve the current process of certification.

The Evolving Nature of Pilot Expertise and the Immediate and

Definitive Style of Certifying Systems

Although computer technology clearly enables software modifications during and after the end
of certification, aircraft philosophy and most sub-system designs are considered to be stable
and definitive at the beginning of the certification process. This is not the case for pilots'

expertise. Most official pilots in charge of flying the aircraft during the certification process
have less than 200 hours experience in the aircraft. This is far from having stabilized expertise

in glass cockpit. Results from field experiments (Sarter & Woods, 1992; Pelegrin & Amalberti,
1993) all indicate that pilot expertise for flying an aircraft with a glass cockpit shifts

significantly up to 800 flight hours and perhaps more.
These values are almost double the values observed for those required for expertise in a

standard cockpit. The problem is that behaviours change with experience. Errors also change in

nature.
The lengthy period required to stabilize expertise in glass cockpits creates difficulties for

pilots becoming used to the system. Pilots cannot easily grasp the enormous possibilities of the
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system. With pilots of up to 400 flight hours, the main risks are overconfidence or excessive

doubt concerning their own capacities which respectively result in engaging the system in

unknown domains or hesitating to make the right choice of action.

Once pilots gain confidence with the system, routine errors and violations are multiplied.

The risk of accident still exists but changes in nature. It is clear that some relationships between

human error and system design will only emerge in experienced pilots.

Certification time

Aircraft/Onboard systems

Design &
Integration

Qualification
time

0 50 1O0

Average time for being
experienced in glass cockpit

200 300 400

Figure 1

This picture raises a key-question on certification: do we test all aspects of system design

and system safety with novices? If not, do we have to consider various levels of pilot

expertise? A positive answer would result in envisaging a "double track certification," one

initial test comparable to what is done currently and one operational complement administered

after a few months of experience on the system.

Another solution would be to use official pilots who are already experts on similar machines

(machine of the same family) to gain time and experience. In this case, novice official pilots in

glass cockpits will also be required to represent this class of pilots and their specific problems.

Note that, in any case, the choice of official pilots who represent the future range of

company pilots and the composition of crews is a key for efficient certification; e.g., take into

account the pilots' level of experience, form a representative panel of pilots, avoid crews made

of two captains, etc. This area could improve greatly in the future.

Practical Outcomes: How to Improve Certification With Human
Factors Considerations

When to Bother With Human Factors in the Certification Process?

A good answer would be: "anytime the human factors perceptive gives a plus to the standard

approach which is already being used." The objective of integrating human factors should not
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be to make a revolution in certification, but merely to support and improve the current way of
doing certification.

The expected benefit is threefold. First, it must be in terms of the identification of

undetected system weaknesses. Second, it is in terms of giving a rationale for pilots' problems
and relationships to system design in the risk of accident. Last but not least, an aircraft can no

longer be viewed as an isolated system. Certification typically concerns the integration of
aircraft into operational conditions. Therefore, outcomes of certification must concern system-
design as well as pilot training and regulations in order that sub-components of the macro-
social system might be included in the evaluation. For this specific concern, psycho-sociology
can effectively support certifiers to make the relevant decisions.

What to Certify?

The complexity and the novelty of systems lead one to consider that the integration of human
factors in certification should overpass the simple evaluation of system-performance and the

reliability of an end-product. It should extend to design-procedures, based on general
principles which have proven to be efficient, and should begin with prototype evaluation at a
period where changes are effectively possible.

What to Measure?

The starting point should be to analyse pilots' activities and detect human errors. However, the
analysis of these human errors must vary according to the goal: assessing the risk of accident
or testing pilot's ease with the system design. This is the reason why no unique classification

of human error can figure out all questions raised by certification. Multiple classifications are
required. Further analysis would concern the assessment and possible measurement of mental
reasoning, mental workload, communications, crew coordination, to sum up all cognitive
activities which serve pilots and set up a relevant representation of the on-going situation.

Who Makes the Evaluation?

We saw in previous sections of this paper that the selection of the panel of official pilots and
engineers participating into the certification campaign is a key-factor in obtaining relevant

results. One could suggest that this panel should be as large as possible to grasp a great variety
of opinions, and also to avoid making certifiers co-designers due to a (too) long relation the
certifier develops with designers. Whatever the panel, it seems useful to require a minimum

human-factors background for people in charge of certifying.

What Limitations for Human Factors?

Many human factor aspects of cockpit automation are beyond the traditional certification
process. We have seen that some of them could be easily better taken into consideration. Yet,
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numerousotherswhichrelateto psycho-sociology,work-organization,careers,trades,or
companieswillalsobebeyondhumanfactorsinvestigationduringthecertificationcampaign.

However,theyshouldbecrucialtosystemacceptabilityandriskacceptability,butthisis
anotherstory.

Assuming that there is the integration of a human factors specialist in the certification
process, another clear limitation should be the legal responsibility of this specialist in case of
accident. Human factors cannot answer all the cockpit-problems, either because of the lack of
knowledge or just because of the lack of time to apply relevant methodology. Therefore it shall
probably be required to specify in writing what domains are relevant for human factors actions

and what mix of responsibilities will draw on human factors specialists and on other certifiers.

What Should Change?

In most cases, the modifications in system-design required by the certification are small The

reason is obviously the financial cost. Therefore, when problems are observed, they tend to be
solved by putting effort into pilot training and regulations.

Software technologies have changed this picture a little by introducing a greater level of
flexibility, but it is clear that the underlying system philosophy remains unchanged.

Even though this is an acceptable outcome and even though experienced pilots rate the
system as very good (this is the case of modem glass cockpit), human factors specialists worry
about this increasing reliance on training solutions. What will occur for flight safety if we

continue to produce opaque systems which require over 1,000 flight hours before pilots are
experienced? Is this realistic?

Similarly, the presence of various generations of aircraft poses unsolved problems at this
time: what will occur with pilots flying successively old and new aircraft? What will occur with
multiqualified pilots flying almost identical aircraft with just a few differences, in particular as
regards Cross Crew Qualifications (CCQ)?

In both cases, the questions overlap systems certification, introducing new types of
questions to investigate and new constraints in forming the panel of pilots called for testing the
system.

Systematic flight analysis of current modem aircraft is a fantastic tool to anticipate most
troubles pilots will have with next technology. This is a central direction for improvements for
all the aeronautical community, and it can be useful (for certification purposes) to ask the
designer to take into account lessons from the previous design.

But again, any envisaged modification in a new machine will have to be investigated with a

human factors perspective not really for itself, but for the possible negative consequences it
will introduce when flying similar systems with bi-qualification.

Finally, one should remember that certifiers do not have to overpass the mandatory mission
they are paid for (assessing that the system fits safety and minimum requirements). Once these
minimum requirements are established and respected, designers will be free to create and
certifiers will not have to officially judge a design in terms of being good or bad. In the context

of a free market there is competition between manufacturers and the success or failure of a
product remains a decision of customers.
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Closing Notes

The international aeronautical community aims at introducing human factors more efficiently in

the certification loop because of the desire to reduce the risk of accident and because of new
technologies which have negatively impacted on human performance in a few domains.
Analysis shows that this improvement cannot be made without a reconsideration of the concept
of human error before (flight analysis), during, and after the certification phase (feedback and
accident analysis).

One last and chronic source of misunderstanding in bridging knowledge between human

factors specialists and engineers is that engineers superimpose human error and system failure
upon one another. This makes no sense. Humans are intelligent and flexible. They can be
perfectly adapted, whatever the complexity of situation and can ensure a very high level of
safety. They learn from errors, cover billions of domains and can adapt to unknown domains.
However, errors are always possible and always occur. These errors are poorly predictable and

tend to occur at times, in areas and with people that nobody would have predicted. On the other
hand, machines are rigid, unintelligent, and repetitive, and failures are predictable and curable.
Because of their stability, machine reliability appears to be easily modeled and also more
reliable than human reliability. The result is that engineers give a systematic priority to
machines to the detriment of pilots because they feel this is the only way to improve and control

safety.
All human factors findings show that they are wrong. Human and machine reliabilities are

simply different and must work in synergy to reach a better level of reliability. Unfortunately,
the solutions chosen at this time to increase system reliability interfere with human reliability

and lower this human reliability.
Thus, it would not be realistic to discuss a very detailed point in the interface, although

fundamental points are being ignored. A French maxim perfectly summarizes this point: "It is
not good that the tree hides the forest."

The ideas expressed in this paper are aiming at launching debates. They are not firm

directions decided upon SFACT, but only preliminary thoughts.
Future decisions of French official services will take into consideration, in addition to some

ideas expressed in this paper and other technical ideas, all legal, international and sociotechnical
aspects of the problems which have not been mentioned in the paper.
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